Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 990
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(11): e2321700121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38442159

RESUMO

Ribosomes are often used in synthetic biology as a tool to produce desired proteins with enhanced properties or entirely new functions. However, repurposing ribosomes for producing designer proteins is challenging due to the limited number of engineering solutions available to alter the natural activity of these enzymes. In this study, we advance ribosome engineering by describing a novel strategy based on functional fusions of ribosomal RNA (rRNA) with messenger RNA (mRNA). Specifically, we create an mRNA-ribosome fusion called RiboU, where the 16S rRNA is covalently attached to selenocysteine insertion sequence (SECIS), a regulatory RNA element found in mRNAs encoding selenoproteins. When SECIS sequences are present in natural mRNAs, they instruct ribosomes to decode UGA codons as selenocysteine (Sec, U) codons instead of interpreting them as stop codons. This enables ribosomes to insert Sec into the growing polypeptide chain at the appropriate site. Our work demonstrates that the SECIS sequence maintains its functionality even when inserted into the ribosome structure. As a result, the engineered ribosomes RiboU interpret UAG codons as Sec codons, allowing easy and site-specific insertion of Sec in a protein of interest with no further modification to the natural machinery of protein synthesis. To validate this approach, we use RiboU ribosomes to produce three functional target selenoproteins in Escherichia coli by site-specifically inserting Sec into the proteins' active sites. Overall, our work demonstrates the feasibility of creating functional mRNA-rRNA fusions as a strategy for ribosome engineering, providing a novel tool for producing Sec-containing proteins in live bacterial cells.


Assuntos
Magnoliopsida , Selenocisteína , RNA Mensageiro/genética , RNA Ribossômico 16S , Selenoproteínas/genética , Ribossomos/genética , Códon de Terminação/genética , Escherichia coli/genética
2.
Nat Commun ; 15(1): 2486, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509072

RESUMO

Protein synthesis terminates when a stop codon enters the ribosome's A-site. Although termination is efficient, stop codon readthrough can occur when a near-cognate tRNA outcompetes release factors during decoding. Seeking to understand readthrough regulation we used a machine learning approach to analyze readthrough efficiency data from published HEK293T ribosome profiling experiments and compared it to comparable yeast experiments. We obtained evidence for the conservation of identities of the stop codon, its context, and 3'-UTR length (when termination is compromised), but not the P-site codon, suggesting a P-site tRNA role in readthrough regulation. Models trained on data from cells treated with the readthrough-promoting drug, G418, accurately predicted readthrough of premature termination codons arising from CFTR nonsense alleles that cause cystic fibrosis. This predictive ability has the potential to aid development of nonsense suppression therapies by predicting a patient's likelihood of improvement in response to drugs given their nonsense mutation sequence context.


Assuntos
Códon sem Sentido , Biossíntese de Proteínas , Humanos , Códon de Terminação/genética , Códon sem Sentido/genética , Células HEK293 , Biossíntese de Proteínas/genética , RNA de Transferência/genética , RNA de Transferência/metabolismo
3.
Biochem Biophys Res Commun ; 700: 149584, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38295647

RESUMO

The pseudouridine (ψ) synthase, RluD is responsible for three ψ modifications in the helix 69 (H69) of bacterial 23S rRNA. While normally dispensable, rluD becomes critical for rapid cell growth in bacteria that are defective in translation-termination. In slow-growing rluD- bacteria, suppressors affecting termination factors RF2 and RF3 arise frequently and restore normal termination and rapid cell growth. Here we describe two weaker suppressors, affecting rpsG, encoding ribosomal protein uS7 and ssrA, encoding tmRNA. In K-12 strains of E. coli, rpsG terminates at a TGA codon. In the suppressor strain, alteration of an upstream CAG to a TAG stop codon results in a shortened uS7 and partial alleviation of slow growth, likely by replacing an inefficient TGA stop codon with the more efficient TAG. Inefficient termination events, such as occurs in some rluD- strains, are targeted by trans-translation. Inactivation of the ssrA gene in slow-growing, termination-defective mutants lacking RluD and RF3, also partially restores robust growth, most probably by preventing destruction of completed polypeptides on ribosomes at slow-terminating stop codons. Finally, an additional role for RluD has been proposed, independent of its pseudouridine synthase activity. This is based on the observation that plasmids expressing catalytically dead (D139N or D139T) RluD proteins could nonetheless restore robust growth to an E. coli K-12 rluD- mutant. However, newly constructed D139N and D139T rluD plasmids do not have any growth-restoring activity and the original observations were likely due to the appearance of suppressors.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Proteínas de Escherichia coli/metabolismo , Códon de Terminação/genética , Biossíntese de Proteínas , Hidroliases/metabolismo
4.
Epigenetics ; 19(1): 2294515, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38118075

RESUMO

Chronic alcohol consumption may alter mRNA methylation and expression levels of genes related to addiction and reward in the brain, potentially contributing to alcohol tolerance and dependence. Neuron-like (SH-SY5Y) and non-neuronal (SW620) cells were utilized as models to examine chronic intermittent ethanol (CIE) exposure-induced global m6A RNA methylation changes, as well as m6A mRNA methylation changes around the stop codon of three opioid receptor genes (OPRM1, OPRD1, and OPRK1), which are known to regulate pain, reward, and addiction behaviours. CIE exposure for three weeks significantly increased global RNA methylation levels in both SH-SY5Y (t = 3.98, P = 0.007) and SW620 (t = 2.24, P = 0.067) cells. However, a 3-week CIE exposure resulted in hypomethylation around mRNA stop codon regions of OPRM1 and OPRD1 in both cell lines [OPRM1(SH-SY5Y): t = -5.05, P = 0.0005; OPRM1(SW620): t = -3.19, P = 0.013; OPRD1(SH-SY5Y): t = -13.43, P < 0.00001; OPRD1(SW620): t = -4.00, P = 0.003]. Additionally, mRNA expression levels of OPRM1, OPRD1, and OPRK1 were downregulated (corresponding to mRNA hypomethylation) in both SH-SY5Y and SW620 cells after a 3-week CIE exposure. The present study demonstrated that chronic ethanol exposure altered global RNA methylation levels, as well as mRNA methylation and expression levels of opioid receptor genes in both neuron-like and non-neuronal cells. Our findings suggest a potential epitranscriptomic mechanism by which chronic alcohol consumption remodels the expression of reward-related and alcohol responsive genes in the brain, thus increasing the risk of alcohol use disorder development.Abbreviations: OPRM1: the µ-opioid receptor; OPRD1: the δ-opioid receptor; OPRK1: the κ-opioid receptor; CIE: chronic intermittent ethanol exposure; CIE+WD: chronic intermittent ethanol exposure followed by a 24-hr withdrawal; SH-SY5Y: human neuroblastoma cell Line; SW620: human colon carcinoma cell line; RT-qPCR: reverse transcription followed by quantitative polymerase reaction; MazF-RT-qPCR: MazF digestion followed by RT-qPCR.


Assuntos
Neuroblastoma , Receptores Opioides , Humanos , Receptores Opioides/genética , Códon de Terminação , Etanol/farmacologia , RNA Mensageiro/genética , Metilação de DNA , Neuroblastoma/genética
5.
Genes (Basel) ; 14(12)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38136932

RESUMO

Hemiculterella wui is an endemic small freshwater fish, distributed in the Pearl River system and Qiantang River, China. In this study, we identified and annotated the complete mitochondrial genome sequence of H. wui. The mitochondrial genome was 16,619 bp in length and contained 13 protein coding genes (PCGs), two rRNA genes, 22 tRNA genes, and one control region. The nucleotide composition of the mitochondrial genome was 29.9% A, 25.3% T, 27.4% C, and 17.5% G, respectively. Most PCGs used the ATG start codon, except COI and ATPase 8 started with the GTG start codon. Five PCGs used the TAA termination codon and ATPase 8 ended with the TAG stop codon, and the remaining seven genes used two incomplete stop codons (T and TA). Most of the tRNA genes showed classical cloverleaf secondary structures, except that tRNASer(AGY) lacked the dihydrouracil loop. The average Ka/Ks value of the ATPase 8 gene was the highest, while the average Ka/Ks value of the COI gene was the lowest. Phylogenetic analyses showed that H. wui has a very close relationship with Pseudohemiculter dispar and H. sauvagei. This study will provide a valuable basis for further studies of taxonomy and phylogenetic analyses in H. wui and Xenocyprididae.


Assuntos
Cipriniformes , Genoma Mitocondrial , Animais , Cipriniformes/genética , Filogenia , Códon de Iniciação , Genoma Mitocondrial/genética , Códon de Terminação , RNA de Transferência/genética , RNA de Transferência/química , Adenosina Trifosfatases/genética
6.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958644

RESUMO

Cell-free molecular display techniques have been utilized to select various affinity peptides from peptide libraries. However, conventional techniques have difficulties associated with the translational termination through in-frame UAG stop codons and the amplification of non-specific peptides, which hinders the desirable selection of low-affinity peptides. To overcome these problems, we established a scheme for ribosome display selection of peptide epitopes bound to monoclonal antibodies and then applied genetic code expansion with synthetic X-tRNAUAG reprogramming of the UAG codons (X = Tyr, Trp, or p-benzoyl-l-phenylalanine (pBzo-Phe)) to the scheme. Based on the assessment of the efficiency of in vitro translation with X-tRNAUAG, we carried out ribosome display selection with genetic code expansion using Trp-tRNAUAG, and we verified that affinity peptides could be identified efficiently regardless of the presence of UAG codons in the peptide coding sequences. Additionally, after evaluating the photo-cross-linking reactions of pBzo-Phe-incorporated peptides, we performed ribosome display selection of low-affinity peptides in combination with genetic code expansion using pBzo-Phe-tRNAUAG and photo-irradiation. The results demonstrated that sub-micromolar low-affinity peptide epitopes could be identified through the formation of photo-induced covalent bonds with monoclonal antibodies. Thus, the developed ribosome display techniques could contribute to the promotion of diverse peptide-based research.


Assuntos
Código Genético , Ribossomos , Códon de Terminação/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Epitopos/metabolismo
7.
Int J Mol Sci ; 24(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37894764

RESUMO

Nonsense mutations cause several genetic diseases such as cystic fibrosis, Duchenne muscular dystrophy, ß-thalassemia, and Shwachman-Diamond syndrome. These mutations induce the formation of a premature termination codon (PTC) inside the mRNA sequence, resulting in the synthesis of truncated polypeptides. Nonsense suppression therapy mediated by translational readthrough-inducing drugs (TRIDs) is a promising approach to correct these genetic defects. TRIDs generate a ribosome miscoding of the PTC named "translational readthrough" and restore the synthesis of full-length and potentially functional proteins. The new oxadiazole-core TRIDs NV848, NV914, and NV930 (NV) showed translational readthrough activity in nonsense-related in vitro systems. In this work, the possible off-target effect of NV molecules on natural termination codons (NTCs) was investigated. Two different in vitro approaches were used to assess if the NV molecule treatment induces NTC readthrough: (1) a study of the translational-induced p53 molecular weight and functionality; (2) the evaluation of two housekeeping proteins' (Cys-C and ß2M) molecular weights. Our results showed that the treatment with NV848, NV914, or NV930 did not induce any translation alterations in both experimental systems. The data suggested that NV molecules have a specific action for the PTCs and an undetectable effect on the NTCs.


Assuntos
Genes Essenciais , Proteína Supressora de Tumor p53 , Códon de Terminação , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Biossíntese de Proteínas , Códon sem Sentido
8.
J Gen Virol ; 104(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37862073

RESUMO

Chikungunya virus (CHIKV) is an alphavirus, transmitted by Aedes species mosquitoes. The CHIKV single-stranded positive-sense RNA genome contains two open reading frames, coding for the non-structural (nsP) and structural proteins of the virus. The non-structural polyprotein precursor is proteolytically cleaved to generate nsP1-4. Intriguingly, most isolates of CHIKV (and other alphaviruses) possess an opal stop codon close to the 3' end of the nsP3 coding sequence and translational readthrough is necessary to produce full-length nsP3 and the nsP4 RNA polymerase. Here we investigate the role of this stop codon by replacing the arginine codon with each of the three stop codons in the context of both a subgenomic replicon and infectious CHIKV. Both opal and amber stop codons were tolerated in mammalian cells, but the ochre was not. In mosquito cells all three stop codons were tolerated. Using SHAPE analysis we interrogated the structure of a putative stem loop 3' of the stop codon and used mutagenesis to probe the importance of a short base-paired region at the base of this structure. Our data reveal that this stem is not required for stop codon translational readthrough, and we conclude that other factors must facilitate this process to permit productive CHIKV replication.


Assuntos
Aedes , Febre de Chikungunya , Vírus Chikungunya , Animais , Vírus Chikungunya/genética , Códon de Terminação/genética , Códon de Terminação/metabolismo , Febre de Chikungunya/genética , Proteínas não Estruturais Virais/genética , Replicação Viral/genética , Mamíferos/genética , Mamíferos/metabolismo
9.
Nucleic Acids Res ; 51(18): 9905-9919, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37670559

RESUMO

Translational fidelity is critical for microbial fitness, survival and stress responses. Much remains unknown about the genetic and environmental control of translational fidelity and its single-cell heterogeneity. In this study, we used a high-throughput fluorescence-based assay to screen a knock-out library of Escherichia coli and identified over 20 genes critical for stop-codon readthrough. Most of these identified genes were not previously known to affect translational fidelity. Intriguingly, we show that several genes controlling metabolism, including cyaA and crp, enhance stop-codon readthrough. CyaA catalyzes the synthesis of cyclic adenosine monophosphate (cAMP). Combining RNA sequencing, metabolomics and biochemical analyses, we show that deleting cyaA impairs amino acid catabolism and production of ATP, thus repressing the transcription of rRNAs and tRNAs to decrease readthrough. Single-cell analyses further show that cAMP is a major driver of heterogeneity in stop-codon readthrough and rRNA expression. Our results highlight that carbon metabolism is tightly coupled with stop-codon readthrough.


Assuntos
Códon de Terminação , AMP Cíclico , Escherichia coli , Sequência de Bases , Códon de Terminação/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Biossíntese de Proteínas , RNA de Transferência/genética , RNA de Transferência/metabolismo
10.
Mol Carcinog ; 62(12): 1803-1816, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37555760

RESUMO

The levels of the SELENOF selenoprotein are dramatically reduced in prostate cancer compared to adjacent benign tissue and reducing SELENOF in prostate epithelial cells results in the acquisition of features of the transformed phenotype. It was hypothesized that the aberrant increase in the eiF4a3 translation factor, which has an established role in RNA splicing and the regulation of selenoprotein translation, contributes to the lower levels of SELENOF. Using the available databases, eIF4a3 messenger RNA (mRNA) levels are elevated in prostate cancer compared to normal tissue as is the hypomethylation of the corresponding gene. Using a prostate cancer tissue microarray, we established that eiF4a3 levels are higher in prostate cancer tissue. Ectopic expression of eIF4a3 in prostate cancer cells reduced SELENOF levels and attenuated the readthrough of the UGA codon using a specialized reporter construct designed to examine UGA decoding, with the opposite effects observed using eIF4a3 knock-down constructs. Direct binding of eIF4a3 to the regulatory regions of SELENOF mRNA was established with pull-down experiments. Lastly, we show that an eIF4a3 inhibitor, eIF4a3-IN-2, increases SELENOF levels, UGA readthrough, and reduces binding of eIF4a3 to the SELENOF mRNA 3'-UTR in exposed cells. These data establish eIF4a3 as a likely prostate cancer oncogene and a regulator of SELENOF translation.


Assuntos
Próstata , Neoplasias da Próstata , Masculino , Humanos , Próstata/metabolismo , Selenoproteínas/genética , Neoplasias da Próstata/genética , Códon de Terminação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
11.
Cell Rep ; 42(9): 113056, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37651229

RESUMO

Suppression of premature termination codons (PTCs) by translational readthrough is a promising strategy to treat a wide variety of severe genetic diseases caused by nonsense mutations. Here, we present two potent readthrough promoters-NVS1.1 and NVS2.1-that restore substantial levels of functional full-length CFTR and IDUA proteins in disease models for cystic fibrosis and Hurler syndrome, respectively. In contrast to other readthrough promoters that affect stop codon decoding, the NVS compounds stimulate PTC suppression by triggering rapid proteasomal degradation of the translation termination factor eRF1. Our results show that this occurs by trapping eRF1 in the terminating ribosome, causing ribosome stalls and subsequent ribosome collisions, and activating a branch of the ribosome-associated quality control network, which involves the translational stress sensor GCN1 and the catalytic activity of the E3 ubiquitin ligases RNF14 and RNF25.


Assuntos
Fibrose Cística , Biossíntese de Proteínas , Humanos , Códon de Terminação/metabolismo , Códon sem Sentido , Ribossomos/metabolismo , Fibrose Cística/genética
12.
Nucleic Acids Res ; 51(14): 7465-7479, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37395404

RESUMO

Extremely diverse libraries are essential for effectively selecting functional peptides or proteins, and mRNA display technology is a powerful tool for generating such libraries with over 1012-1013 diversity. Particularly, the protein-puromycin linker (PuL)/mRNA complex formation yield is determining for preparing the libraries. However, how mRNA sequences affect the complex formation yield remains unclear. To study the effects of N-terminal and C-terminal coding sequences on the complex formation yield, puromycin-attached mRNAs containing three random codons after the start codon (32768 sequences) or seven random bases next to the amber codon (6480 sequences) were translated. Enrichment scores were calculated by dividing the appearance rate of every sequence in protein-PuL/mRNA complexes by that in total mRNAs. The wide range of enrichment scores (0.09-2.10 for N-terminal and 0.30-4.23 for C-terminal coding sequences) indicated that the N-terminal and C-terminal coding sequences strongly affected the complex formation yield. Using C-terminal GGC-CGA-UAG-U sequences, which resulted in the highest enrichment scores, we constructed highly diverse libraries of monobodies and macrocyclic peptides. The present study provides insights into how mRNA sequences affect the protein/mRNA complex formation yield and will accelerate the identification of functional peptides and proteins involved in various biological processes and having therapeutic applications.


Assuntos
Códon de Terminação , Biblioteca de Peptídeos , Peptídeos/metabolismo , Proteínas/genética , Puromicina/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446121

RESUMO

It is reported that about 10% of cystic fibrosis (CF) patients worldwide have nonsense (stop) mutations in the CFTR gene, which cause the premature termination of CFTR protein synthesis, leading to a truncated and non-functional protein. To address this issue, we investigated the possibility of rescuing the CFTR nonsense mutation (UGA) by sequence-specific RNA editing in CFTR mutant CFF-16HBEge, W1282X, and G542X human bronchial cells. We used two different base editor tools that take advantage of ADAR enzymes (adenosine deaminase acting on RNA) to edit adenosine to inosine (A-to-I) within the mRNA: the REPAIRv2 (RNA Editing for Programmable A to I Replacement, version 2) and the minixABE (A to I Base Editor). Immunofluorescence experiments show that both approaches were able to recover the CFTR protein in the CFTR mutant cells. In addition, RT-qPCR confirmed the rescue of the CFTR full transcript. These findings suggest that site-specific RNA editing may efficiently correct the UGA premature stop codon in the CFTR transcript in CFF-16HBEge, W1282X, and G542X cells. Thus, this approach, which is safer than acting directly on the mutated DNA, opens up new therapeutic possibilities for CF patients with nonsense mutations.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Edição de RNA/genética , Mutação , Fibrose Cística/terapia , Fibrose Cística/tratamento farmacológico , Linhagem Celular , Códon de Terminação
14.
RNA ; 29(9): 1400-1410, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37279998

RESUMO

Unique chemical and physical properties are introduced by inserting selenocysteine (Sec) at specific sites within proteins. Recombinant and facile production of eukaryotic selenoproteins would benefit from a yeast expression system; however, the selenoprotein biosynthetic pathway was lost in the evolution of the kingdom Fungi as it diverged from its eukaryotic relatives. Based on our previous development of efficient selenoprotein production in bacteria, we designed a novel Sec biosynthesis pathway in Saccharomyces cerevisiae using Aeromonas salmonicida translation components. S. cerevisiae tRNASer was mutated to resemble A. salmonicida tRNASec to allow recognition by S. cerevisiae seryl-tRNA synthetase as well as A. salmonicida selenocysteine synthase (SelA) and selenophosphate synthetase (SelD). Expression of these Sec pathway components was then combined with metabolic engineering of yeast to enable the production of active methionine sulfate reductase enzyme containing genetically encoded Sec. Our report is the first demonstration that yeast is capable of selenoprotein production by site-specific incorporation of Sec.


Assuntos
Saccharomyces cerevisiae , Códon de Terminação/genética , Códon de Terminação/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Aeromonas salmonicida/genética , Engenharia de Proteínas , RNA de Transferência de Cisteína/química , RNA de Transferência de Cisteína/genética , RNA de Transferência de Cisteína/metabolismo , Humanos , Conformação de Ácido Nucleico
15.
Methods Mol Biol ; 2676: 233-243, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37277637

RESUMO

Protein tyrosine O-sulfation (PTS) plays a crucial role in numerous extracellular protein-protein interactions. It is involved in diverse physiological processes and the development of human diseases, including AIDS and cancer. To facilitate the study of PTS in live mammalian cells, an approach for the site-specific synthesis of tyrosine-sulfated proteins (sulfoproteins) was developed. This approach takes advantage of an evolved Escherichia coli tyrosyl-tRNA synthetase to genetically encode sulfotyrosine (sTyr) into any proteins of interest (POI) in response to a UAG stop codon. Here, we give a step-by-step account of the incorporation of sTyr in HEK293T cells using the enhanced green fluorescent protein as an example. This method can be widely applied to incorporating sTyr into any POI to investigate the biological functions of PTS in mammalian cells.


Assuntos
Escherichia coli , Tirosina , Animais , Humanos , Células HEK293 , Tirosina/metabolismo , Códon de Terminação , Escherichia coli/genética , Escherichia coli/metabolismo , Mamíferos/genética
16.
Science ; 380(6644): 531-536, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37141370

RESUMO

The genetic code that specifies the identity of amino acids incorporated into proteins during protein synthesis is almost universally conserved. Mitochondrial genomes feature deviations from the standard genetic code, including the reassignment of two arginine codons to stop codons. The protein required for translation termination at these noncanonical stop codons to release the newly synthesized polypeptides is not currently known. In this study, we used gene editing and ribosomal profiling in combination with cryo-electron microscopy to establish that mitochondrial release factor 1 (mtRF1) detects noncanonical stop codons in human mitochondria by a previously unknown mechanism of codon recognition. We discovered that binding of mtRF1 to the decoding center of the ribosome stabilizes a highly unusual conformation in the messenger RNA in which the ribosomal RNA participates in specific recognition of the noncanonical stop codons.


Assuntos
Códon de Terminação , Mitocôndrias , Terminação Traducional da Cadeia Peptídica , Fatores de Terminação de Peptídeos , Humanos , Microscopia Crioeletrônica , Mitocôndrias/genética , Mitocôndrias/metabolismo , Fatores de Terminação de Peptídeos/química , Conformação Proteica
17.
RNA ; 29(9): 1379-1387, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37221013

RESUMO

Under certain circumstances, any of the three termination codons can be read through by a near-cognate tRNA; i.e., a tRNA whose two out of three anticodon nucleotides base pair with those of the stop codon. Unless programed to synthetize C-terminally extended protein variants with expanded physiological roles, readthrough represents an undesirable translational error. On the other side of a coin, a significant number of human genetic diseases is associated with the introduction of nonsense mutations (premature termination codons [PTCs]) into coding sequences, where stopping is not desirable. Here, the tRNA's ability to induce readthrough opens up the intriguing possibility of mitigating the deleterious effects of PTCs on human health. In yeast, the UGA and UAR stop codons were described to be read through by four readthrough-inducing rti-tRNAs-tRNATrp and tRNACys, and tRNATyr and tRNAGln, respectively. The readthrough-inducing potential of tRNATrp and tRNATyr was also observed in human cell lines. Here, we investigated the readthrough-inducing potential of human tRNACys in the HEK293T cell line. The tRNACys family consists of two isoacceptors, one with ACA and the other with GCA anticodons. We selected nine representative tRNACys isodecoders (differing in primary sequence and expression level) and tested them using dual luciferase reporter assays. We found that at least two tRNACys can significantly elevate UGA readthrough when overexpressed. This indicates a mechanistically conserved nature of rti-tRNAs between yeast and human, supporting the idea that they could be used in the PTC-associated RNA therapies.


Assuntos
Cisteína , Saccharomyces cerevisiae , Humanos , Códon de Terminação/genética , Cisteína/genética , Cisteína/metabolismo , Células HEK293 , Saccharomyces cerevisiae/genética , RNA de Transferência de Cisteína/metabolismo , RNA de Transferência de Triptofano/metabolismo , RNA de Transferência de Tirosina , RNA de Transferência/genética , RNA de Transferência/metabolismo , Anticódon , Códon sem Sentido/genética , Biossíntese de Proteínas
18.
Int J Mol Sci ; 24(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37047442

RESUMO

Currently, selenobiology is an actively developing area, primarily due to the study of the role of the trace element selenium and its organic and inorganic compounds in the regulation of vital processes occurring in the cell. In particular, the study of the functions of selenium nanoparticles has gained great popularity in recent years. However, a weak point in this area of biology is the study of the functions of selenoproteins, of which 25 have been identified in mammals to date. First of all, this is due to the difficulties in obtaining native forms of selenoproteins in preparative quantities, due to the fact that the amino acid selenocysteine is encoded by one of the three stop codons of the TGA universal genetic code. A complex system for recognizing a given codon as a selenocysteine codon has a number of features in pro- and eukaryotes. The selenoprotein SELENOM is one of the least studied mammalian selenoproteins. In this work, for the first time, studies of the molecular mechanisms of regulation of the cytotoxic effect of this protein on human glioblastoma cells were carried out. The cytotoxicity of cancer cells in our experiments was already observed when cells were exposed to 50 µg of SELENOM and increased in proportion to the increase in protein concentration. Apoptosis of human glioblastoma cells was accompanied by an increase in mRNA expression of a number of pro-apoptotic genes, an increase in endoplasmic reticulum stress, and activation of the UPR IRE1α signaling pathway. The results obtained also demonstrate a dose-dependent depletion of the Ca2+ pool under the action of SELENOM, which proves the important role of this protein in the regulation of calcium homeostasis in the cell.


Assuntos
Glioblastoma , Selênio , Animais , Humanos , Endorribonucleases/genética , Selênio/farmacologia , Selênio/metabolismo , Selenocisteína/farmacologia , Selenocisteína/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Proteínas Serina-Treonina Quinases/genética , Selenoproteínas/metabolismo , Códon de Terminação , Mamíferos/metabolismo
19.
Methods Mol Biol ; 2643: 383-390, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36952200

RESUMO

The translation of mRNAs lacking a stop codon results in a nascent polypeptide chain still attached to the translating ribosome. When containing an exposed N-terminal targeting signal, these so-called nonstop (ns) proteins have been shown to localize to their respective organellar translocation channel, resulting in stabilized translocation intermediates. Utilizing a plasmid encoding a FLAG-tagged nonstop protein with an N-terminal targeting signal early-stage ribosome-associated protein complexes can be purified by affinity chromatography. This will be exemplified by purification of protein complexes of the peroxisomal protein import machinery using different nonstop variants of the PTS2 cargo protein Fox3p from both soluble and membrane fractions.


Assuntos
Ribossomos , Proteínas de Saccharomyces cerevisiae , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Peptídeos/metabolismo , Códon de Terminação , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA